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Abstract. A detailed analysis of the top-quark/squark quantum corrections to the lightest CP -even Higgs
boson (h0) self-couplings is presented in the MSSM. By considering the leading one-loop Yukawa-coupling
contributions of O(m4

t ), we discuss the decoupling behavior of these corrections when the top squarks are
heavy compared to the electroweak scale. As shown analytically and numerically, the large corrections can
almost completely be absorbed into the h0-boson mass. Our conclusion is that the h0 self-couplings remain
similar to the coupling of the SM Higgs boson for the heavy top-squark sector.

1 Introduction

The standard model (SM) with minimal Higgs-field con-
tent could turn out not to be the basic theoretical frame-
work for describing electroweak symmetry breaking. In
recent years supersymmetry (SUSY) has become one of
the most promising theoretical ideas beyond the SM. The
minimal supersymmetric standard model (MSSM) [1] is
the simplest supersymmetric extension of the SM and at
least as successful as the SM to describe the experimental
data [2].

The Higgs sector of the MSSM [3] involves two scalar
doublets, H1 and H2, in order to give masses to up- and
down-type fermions in a way consistent with supersymme-
try. After spontaneous symmetry breaking, induced
through the neutral components of H1 and H2 with vac-
uum expectation values v1 and v2, respectively, the MSSM
Higgs sector contains five physical states: two neutral CP -
even scalars (h0 and H0), one CP -odd pseudoscalar (A0),
and two charged-Higgs states (H±). The Higgs potential
of the MSSM is constrained by SUSY [3]: all quartic cou-
pling constants are related to the electroweak gauge cou-
pling constants, thus imposing various restrictions on the
tree-level Higgs-boson masses, couplings and mixing an-
gles. In particular, all tree-level Higgs parameters can be
determined in terms of the mass of the CP -odd Higgs bo-
son, MA0 , and the ratio tanβ = v2/v1. The other masses
and the mixing angle α are then fixed, and the trilinear
and quartic self-couplings of the physical Higgs particles
can be predicted. The knowledge of the Higgs-boson self-
couplings will be essential for establishing the Higgs poten-
tial and thus the Higgs mechanism as the basic mechanism
for generating the masses of the fundamental particles [4].
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The tree-level relations among the Higgs-boson masses
in the MSSM acquire relevant radiative corrections, do-
minated by top-quark/squark loops [5]. An extensive effort
has been devoted to progressive refinements of the radia-
tive corrections for the Higgs-boson masses, with special
emphasis on the prediction of the lightest MSSM Higgs-
boson mass Mh0 , by using different techniques: renorma-
lization group equations [6,7], diagrammatic computations
[8–11], and a combination of both [12]. Besides the mass
spectrum, the loop corrections influence the production
cross sections and decay branching ratios [13].

Moreover, large quark/squark-loop corrections affect
also the self-couplings of the neutral Higgs particles [14–
18]. The loop contributions modify the mixing angle α for
the neutral CP -even mass eigenstates and alter the triple
and quartic Higgs-boson self-couplings. Since in the limit
of a heavy A0 boson the light-Higgs couplings to gauge
bosons and fermions become very close to those of the
SM, quantum effects can play a crucial role to distinguish
between a SM and a MSSM light Higgs boson. In this
context, also the investigation of the decoupling behav-
ior of quantum effects in the Higgs self-interaction are of
interest.

In this paper we are concerned with the one-loop cor-
rections to the self-couplings of the lightest CP -even
MSSM Higgs boson, h0. As a first step, we analyze here the
leading one-loop Yukawa contributions of O(m4

t ) to the
h0 one-particle irreducible (1PI) Green functions, which
yield, besides the Higgs-boson mass corrections, the ef-
fective triple and quartic self-couplings. We study, both
numerically and analytically, the asymptotic behavior of
these corrections in the limit of heavy top squarks, with
masses large as compared to the electroweak scale, and dis-
cuss the decoupling behavior of a heavy top-squark system
in the Higgs sector, which becomes particularly interesting
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for large values of MA when h0 is the only light Higgs par-
ticle. The corresponding analysis of all the one-loop con-
tributions from the Higgs sector to the h0 self-couplings
will be presented elsewhere [19].

The decoupling properties of the one-loop radiative
corrections to various observables have been extensively
studied in the literature [20–29]. Concerning Higgs physics,
it is well known that the SUSY one-loop corrections to the
couplings of Higgs bosons to b-quarks can be significant
for large values of tanβ, and that they do not decouple, in
general, in the limit of a heavy supersymmetric spectrum
[21–24]. Conversely, it has been shown that all the non-
standard particles in the MSSM decouple from low-energy
electroweak gauge-boson physics [30,31].

This paper is organized as follows: In Sect. 2 our no-
tation is given and a brief collection of formulae for the
top-squark sector and for the Higgs sector in the SM and
MSSM, describing the asymptotic limits being considered
here. The asymptotic results for the top-quark/squark
contributions to the vertex functions of the h0 and a dis-
cussion of decoupling properties are contained in Sect. 3.
A more explicit discussion of the O(m4

t ) radiative correc-
tions to the trilinear and quartic h0-boson self-couplings
is given in Sect. 4, with a short summary in Sect. 5.

2 Particle spectrum and decoupling limit

2.1 MSSM squark sector

Since we are dealing with the leading quark/squark con-
tributions to the Higgs sector, we briefly describe the in-
put from the top-squark sector and specify the asymptotic
limits for the subsequent discussion. For simplicity we as-
sume that there is no intergenerational flavour mixing.
The tree-level t̃ squared-mass matrix reads

M2
t̃ =

(
M2

L mtXt

mtXt M2
R

)
, (1)

where

M2
L = M2

Q̃
+ m2

t +
(

1
2

− 2
3
s2
W

)
MZ

2 cos 2β,

M2
R = M2

Ũ
+ m2

t +
2
3
s2
WMZ

2 cos 2β,

Xt = At − µ cotβ, (2)

and sW ≡ sin θW. The parameters MQ̃ and MŨ are the
soft SUSY-breaking masses, At is the corresponding soft
SUSY-breaking trilinear coupling, and µ is the bilinear
coupling of the two Higgs doublets.

Diagonalizing the t̃-mass matrix (1) yields the mass
eigenvalues m2

t̃1,2
and the t̃-mixing angle θt̃, relating the

current eigenstates to the mass eigenstates,(
t̃1
t̃2

)
=

(
cos θt̃ − sin θt̃

sin θt̃ cos θt̃

)(
t̃L
t̃R

)
. (3)

The corresponding stop-mass eigenvalues, with the con-
vention mt̃1

> mt̃2
, are given by

m2
t̃1,2

=
1
2

[
M2

L + M2
R ±

√
(M2

L − M2
R)2 + 4m2

tX
2
t

]
, (4)

and the mixing angle θt̃ is determined by

cos 2θt̃ =
M2

L − M2
R

m2
t̃1

− m2
t̃2

, sin 2θt̃ =
2mtXt

m2
t̃1

− m2
t̃2

. (5)

With respect to our analysis of decoupling, we consider
the asymptotic limit in which the t̃ masses are very large as
compared to the external momenta and to the electroweak
scale,

m2
t̃1
,m2

t̃2
� MZ

2,Mh0
2. (6)

Since, however, the asymptotic behavior of one-loop in-
tegrals with internal t̃ lines depend on the relative size
of the top-squark masses in the loop propagators, more
specific assumptions have to be made. The only two inter-
nal masses that can be different in the loop diagrams are
mt̃1

,mt̃2
(see Fig. 1 for the generic diagrams considered

here). For the discussion in Sect. 3 we assume that these
two t̃ masses are heavy but close to each other, i.e.

|m2
t̃1

− m2
t̃2

| � |m2
t̃1

+ m2
t̃2

|. (7)

A detailed discussion of this limit can be found in [30].
Another possible scenario is the case where the stop-mass
splitting is of the order of the SUSY mass scale, MQ̃,

|m2
t̃1

− m2
t̃2

| 	 |m2
t̃1

+ m2
t̃2

|, (8)

which will be considered in Sect. 4.

2.2 SM and MSSM Higgs sector

The electroweak gauge bosons and the fundamental mat-
ter particles of the SM acquire their masses through the
interaction with the Higgs field. To establish the Higgs
mechanism experimentally, the characteristic self-interac-
tion potential of the SM, V = λ

(|ϕ|2 − (1/2)v2
)2, with a

minimum at 〈ϕ〉0 = v/(21/2), must be reconstructed once
the Higgs particle will be discovered. This task requires the
measurement of the trilinear and quartic self-couplings of
the Higgs boson, HSM. The self-couplings are uniquely de-
termined in the SM by the mass of the Higgs boson, which
is related to the quartic coupling λ by MH = (2λ)1/2v. In-
troducing the physical Higgs field H = HSM in the neutral
component of the doublet, ϕ0 = (v + H)/(21/2), the tri-
linear and quartic vertices of the Higgs field H can be
derived from the potential V , yielding

λHHH =
3gM2

H

2MW
=

3M2
H

v
, λHHHH =

3g2M2
H

4MW
2 =

3M2
H

v2 ,

(9)
with the SU(2)L gauge coupling g.
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In the MSSM, the two-doublet Higgs potential is given
by [3]

V = m2
1H1H̄1 + m2

2H2H̄2 + m2
12(εabH

a
1H

b
2 + h.c.)

+
g′2 + g2

8
(H1H̄1 − H2H̄2)2 +

g2

2
|H1H̄2|2, (10)

with the doublet fields H1 and H2, the soft SUSY-breaking
terms m1,m2,m12, and the SU(2)L and U(1)Y gauge cou-
plings g, g′.

Two parameters, conveniently chosen to be the CP -
odd Higgs-boson mass MA0 (MA0

2 = m2
12(tanβ + cotβ))

and tanβ = v2/v1, are sufficient to fix all the other pa-
rameters of the tree-level Higgs sector. The two CP -even
neutral mass eigenstates are a mixture of the real neutral
H1 and H2 components,(

H0

h0

)
=

(
cosα sinα

−sinα cosα

)(
H0

2

H0
1

)
, (11)

with the mixing angle α related to tanβ and MA0 by

tan 2α = tan 2β
MA0

2 + MZ
2

MA0
2 − MZ

2 , −π

2
< α < 0. (12)

The tree-level mass matrix of the neutral CP -even
Higgs bosons can be expressed in terms of MZ , MA0 and
the angle β as follows:

M2,tree
Higgs (13)

=

(
MA0

2 sin2 β + MZ
2 cos2 β −(MA0

2 + MZ
2)sinβcosβ

−(MA0
2 + MZ

2)sinβcosβ MA0
2 cos2 β + MZ

2 sin2 β

)
.

The eigenvalues of M2,tree
Higgs are the squared masses of

the two CP -even Higgs scalars, in terms of MA0 and β
given by

M2
H0,h0 =

1
2

[
MA0

2 + MZ
2 (14)

±
√(

MA0
2 + MZ

2)2 − 4M2
AMZ

2 cos2 2β

]
.

These tree-level predictions for the CP -even Higgs-
boson masses and mixing angle, however, are subject to
large radiative corrections, with sensitive dependence on
the top mass. Explicit analytical expressions for the loga-
rithmic and non-logarithmic contributions to Mh0 , includ-
ing the dominant two-loop terms, can be found in [11].

The tree-level trilinear and quartic h0 couplings in the
MSSM, which are in the focus of the present work, can be
written as follows:

λ0
hhh = 3

gMZ

2cW
cos 2α sin(β + α),

λ0
hhhh = 3

g2

4c2W
cos2 2α, (15)

with cW = cos θW.

Obviously, they are different from the couplings of the
SM Higgs boson (9). However, the situation changes in
the so-called decoupling limit of the Higgs sector. The de-
coupling limit, studied first in [32], is, in short, defined by
considering a large CP -odd Higgs-boson mass MA � MZ ,
yielding a particular spectrum in the Higgs sector with
very heavy H0, H±, A0 bosons obeying MA0 	 MH0 	
MH± [up to terms of O (MZ/MA0)] and a light h0 boson
with a tree-level mass of M tree

h0 	 MZ | cos 2β|. In this limit,
which also implies α → β−π/2, one obtains that the self-
couplings (15) tend towards

λ0
hhh 	 3

g

2MW
M2 tree

h0 , λ0
hhhh 	 3

g2

4MW
2M

2 tree
h0 , (16)

and thus the tree-level couplings of the light CP -even
Higgs boson approach the couplings (9) of a SM Higgs
boson with the same mass.

Relevant radiative corrections are also expected for the
light CP -even Higgs-boson self-couplings, dominated by
the top-quark/squark contributions (see the discussions
in [14–18] for trilinear couplings). In the following we in-
vestigate these dominant one-loop contributions to the h0

self-couplings and analyze their behavior in the decoupling
limit.

3 Higgs boson self-couplings

3.1 Leading Yukawa corrections in the asymptotic limit

Here we derive the one-loop leading Yukawa corrections
from top and stop loop contributions to the one-, two-,
tree- and four-point vertex functions of the lightest Higgs
boson, h0, and study their asymptotic behavior for a heavy
top-squark sector. The three- and four-point vertex func-
tions correspond to the h0 self-couplings. The computa-
tion has been performed by the diagrammatic method us-
ing FeynArts 3 and FormCalc [33], and the results are
expressed in terms of the standard one-loop integrals [34].

The general results for the n-point vertex functions can
be summarized by the following generic expression,

Γ
t,t̃(n)
h0 = Γ

(n)
0h0 + ∆Γ

t,t̃(n)
h0 , (17)

where the subscript 0 refers to the tree-level functions,
which correspond directly to the expressions for the h0

Higgs couplings already given in (15). The one-loop contri-
butions are summarized in ∆Γ

t,t̃(n)
h0 . In particular, ∆Γ

t,t̃(1)
h0

is the tadpole contribution and ∆Γ
t,t̃(2)
h0 the h0 self-energy;

∆Γ
t,t̃(3)
h0 and ∆Γ

t,t̃(4)
h0 are the corresponding radiative cor-

rections to the trilinear and quartic h0 self-couplings
(choosing a normalization that the Feynman diagrams
yield always −iΓ ).

In order to obtain the asymptotic behavior of the one-
loop integrals we assume in this section the conditions
given in (6) and (7) and use the asymptotic expressions of
the one-loop integrals presented in [30], and the appropri-
ate results for the integrals with equal masses in the loop
propagators given in [35].
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Fig. 1a,b. Generic diagrams con-
tributing to the one-, two-, three- and
four-point 1PI Green functions of the
lightest Higgs boson h0 at the one-loop
level: a with top-squark loops, f̃ ≡
t̃1, t̃2, b with top-quark loops

The diagrams contributing to the n-point vertex func-
tions (n = 1, ..., 4) from the top-quark/squark sector are
shown generically in Fig. 1. The corresponding analytic
expressions ∼ O(m4

t ), in the asymptotic limit according
to (6) and (7) are given by

∆Γ
t,t̃(1)
h0 =

3
8π2

g

MW
m4

t

(
∆ε + 1 − log

m2
t

µ2
0

)
,

∆Γ
t,t̃(2)
h0 =

3
16π2

g2

MW
2m

4
t

×
(
∆ε + 1 + log

m2
t̃1

µ2
0

+ log
m2

t̃2

µ2
0

− 3 log
m2

t

µ2
0

)
,

∆Γ
t,t̃(3)
h0 = − 3

16π2

g3

MW
3m

4
t

(
2 + 3 log

m2
t

mt̃1
mt̃2

)
,

∆Γ
t,t̃(4)
h0 = − 3

32π2

g4

MW
4m

4
t

(
8 + 3 log

m2
t

mt̃1
mt̃2

)
, (18)

where µ0 is the scale of dimensional regularization. All
other terms depending on the external momenta and on
the stop-mass splitting vanish for large values of mt̃1,2

. The
three- and four-point functions are UV-finite, whereas the
one- and two-point functions involve a singular ∆ε term,
with

∆ε =
2
ε

− γε + log(4π), ε = 4 − D. (19)

All these contributions contain a logarithmic dependence
on the stop masses. These functions are the only remain-
der of a heavy stop system in the vertex functions of the
h0 and thus summarize all the potential non-decoupling
effects of these particles in the effective potential for the
lightest Higgs boson. At this point, one could be tempted
to conclude that heavy top squarks do not decouple in
the Green functions of the lightest CP -even Higgs boson
of the MSSM and therefore, in the h0 self-couplings. It is
essential, however, to study whether those effects appear
in the relations between observables [36].

There are also non-logarithmic finite contributions to
the three- and four-point functions in (18). These terms
arise from the last two diagrams in Fig. 1. They are also
present for the Higgs particle (HSM) in the external legs,
instead of h0. Therefore, they do not contribute to the
difference between the h0 and HSM properties (see next
section).

3.2 Renormalized vertices and decoupling behavior

The vertex functions obtained from the set of one-loop di-
agrams are in general UV-divergent. For finite 1PI Green
functions and physical observables, renormalization has to
be performed by adding appropriate counterterms. For a
systematic one-loop calculation, the free parameters of the
Higgs potential m2

1,m
2
2,m

2
12, g, g

′ and the two vacua v1, v2



W. Hollik, S. Peñaranda: Yukawa coupling quantum corrections 167

are replaced by renormalized parameters plus counter-
terms. This transforms the potential V into V +δV , where
V, expressed in terms of the renormalized parameters, is
formally identical to (10), and δV is the counterterm po-
tential. By using the standard renormalization procedure
[26,9] with m2

i → Z−1
Hi

(m2
i + δm2

i ), g → ZW
1 Z

W (−3/2)
2 g,

g′ → ZB
1 Z

B(−3/2)
2 g′, vi → Z

1/2
Hi

(vi − δvi), and with field
renormalization constants δZHi , we obtain the counter-
terms for the n-point (n = 1, ..., 4) vertex functions in the
decoupling limit as follows:

δΓ
(1)
h0 =

gMZ

2cW
cos 2βv2 (sin2 βδZH2 − cos2 βδZH1

)
− vδM2

12 +
1
4
g2

c2W
v2 cos2 2βδv − 1

8
v3 cos2 2βδG2,

δΓ
(2)
h0 =

3
4

[
v2 cos 2β

g2

c2W

(
sin2 βδZH2 − cos2 βδZH1

)
− 4

3
δM2

12 +
g2

c2W
cos2 2βvδv − v2

2
cos2 2βδG2

]
,

δΓ
(3)
h0 =

3
4

cos 2β
[
2v

g2

c2W

(
sin2 βδZH2 − cos2 βδZH1

)
+

g2

c2W
cos 2βδv − v cos 2βδG2

]
,

δΓ
(4)
h0 =

3
4

cos 2β

[
2
g2

c2W

(
sin2 βδZH2 − cos2 βδZH1

)

− cos 2βδG2

]
, (20)

where we have introduced the abbreviations

δG2 ≡ δg2 + δg′2 = g2(2δZW
1 − 3δZW

2 ) − g′2δZB
2 ,

δM2
12 ≡ cos2 βδm2

1 + sin2 βδm2
2 + sin 2βδm2

12,

vδv = v1δv1 + v2δv2 with v2 = v2
1 + v2

2 . (21)

In the same way, the pseudoscalar-mass counterterm is
obtained as

δMA0
2 =

1
2
(
sin2 βδm2

1 + cos2 βδm2
2 − sin 2βδm2

12
)

− 1
4
MZ

2 cos2 2β (22)

×
(
c2W
g2 δG2 + δZH1 + δZH2 − 2

δv

v

)
.

In the on-shell scheme, adopted in this paper, the counter-
terms are fixed by imposing the following renormalization
conditions [9,37]:

(1) the on-shell conditions for MW,Z and the electric
charge e as in the minimal SM;

(2) the on-shell condition for the A0 boson with the pole
mass MA;

(3) the tadpole conditions for vanishing renormalized tad-
poles, i.e. the sum of the one-loop tadpole diagrams
for H0, h0, and the corresponding tadpole counter-
term is equal to zero;

(4) the renormalization of tanβ in such a way that the
relation tanβ = v2/v1 is valid for the one-loop Higgs
minima.

By this set of conditions, the input for the MSSM Higgs
sector is fixed by the pole mass MA and tanβ, together
with the standard gauge-sector input MW,Z and e.

With restriction to the dominant O(m4
t ) contributions,

the mass and field counterterms appearing in (20)–(22)
have the following structure:

δZH1,2 = 0, δv = 0, δG2 = 0,

δM2
12 =

3
16π2

g2

MW
2m

4
t

(
∆ε + 1 − log

m2
t

µ2
0

)
,

δMA0
2 =

3
16π2

g2

MW
2m

4
t cot2 β

(
∆ε + 1 − log

m2
t

µ2
0

)
. (23)

Now the renormalized vertex functions are obtained as the
sum of the one-loop contributions in (18) and the counter-
terms (20) together with (23). The renormalized one-point
function vanishes, according to the corresponding renor-
malization condition: ∆Γ

t,t̃(1)
h0 + δΓ

t,t̃(1)
h0 = 0.

The renormalized two-point function is given by

∆Γ̂
t,t̃(2)
h0 = ∆Γ

t,t̃(2)
h0 + δΓ

t,t̃(2)
h0

= − 3
8π2

g2

MW
2m

4
t log

m2
t

mt̃1
mt̃2

. (24)

As expected, the UV-divergence cancels between the one-
loop and the counterterm contributions; however, a log-
arithmic heavy mass term, which looks like a non-decou-
pling effect of the heavy particles, remains. The renorma-
lized two-point function is responsible for a shift in the
pole of the h0 propagator and thus represents the (lead-
ing) one-loop correction to the h0 mass,

∆Mh0
2 = − 3

8π2

g2

MW
2m

4
t log

m2
t

mt̃1
mt̃2

. (25)

The same expression is obtained from the results listed
in [11] for the leading one-loop radiative corrections from
the t, t̃−sector to the light h0 boson for the special case of
MA � MZ and in the limiting situations defined in (7).

For the counterterms to the three- and four-point func-
tions, there is no O(m4

t ) contribution. Hence, the renor-
malized h0 three- and four-point vertices, using the result
(25), can be expressed as follows:

∆Γ̂
t,t̃(3)
h0 =

3
v
∆Mh0

2 − 3
8π2

g3

MW
3m

4
t ,

∆Γ̂
t,t̃(4)
h0 =

3
v2∆Mh0

2 − 3
4π2

g4

MW
4m

4
t . (26)

Without the non-logarithmic top-mass term, the trilinear
and quartic h0 self-couplings at the one-loop level have
the same form as in (16), with the tree-level Higgs mass
replaced by the corresponding one-loop mass

Mh0
2 = M2 tree

h0 + ∆Mh0
2. (27)
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The terms logarithmic in the heavy-squark masses dis-
appear when the vertices are expressed in terms of the
Higgs-boson mass Mh0 and, therefore, they do not ap-
pear directly in related observables, i.e. they decouple.
Moreover, the h0 self-couplings get the form of the self-
couplings of the SM Higgs boson (9) with MH = Mh0 .
The non-logarithmic top-mass terms are common to both
h0 and HSM (in the SM after renormalization of the tri-
linear and quartic couplings).

To make this last point explicit, we give the one-loop
O(m4

t ) contributions for the SM Higgs n-point vertex
functions, which follow from the last four diagrams in
Fig. 1 (with H ≡ HSM instead of h0 in the external lines)

∆Γ
(1)
H =

3g
8π2MW

m4
t

(
∆ε − log

m2
t

µ2
0

+ 1
)
,

∆Γ
(2)
H =

3g2

16π2M2
W

m4
t

(
3∆ε − 3 log

m2
t

µ2
0

+ 1
)
,

∆Γ
(3)
H =

3g3

16π2M3
W

m4
t

(
3∆ε − 3 log

m2
t

µ2
0

− 2
)
,

∆Γ
(2)
H =

3g4

32π2M4
W

m4
t

(
3∆ε − 3 log

m2
t

µ2
0

− 8
)
. (28)

Differently from the MSSM h0 boson, the three- and four-
point SM vertices are not UV-finite and require renor-
malization also at the level of the O(m4

t ) approximation.
Adding the counterterms, which are derived from the SM
Higgs potential

V = −µ2

2
(v + H)2 +

λ

4
(v + H)4 (29)

via SM parameter renormalization (λ → λ + δλ, µ2 →
µ2 + δµ2, v → v − δv), yields the renormalized one-loop
vertex functions

∆Γ̂
(1)
H = ∆Γ

(1)
H + δΓ

(1)
H

= ∆Γ
(1)
H + v3δλ − vδµ2 − (3v2λ − µ2)δv,

∆Γ̂
(2)
H = ∆Γ

(2)
H + δΓ

(2)
H

= ∆Γ
(2)
H + 3v2δλ − δµ2 − 6vλδv,

∆Γ̂
(3)
H = ∆Γ

(3)
H + δΓ

(3)
H = ∆Γ

(3)
H + 6vδλ − 6λδv,

∆Γ̂
(4)
H = ∆Γ

(4)
H + δΓ

(4)
H = ∆Γ

(4)
H + 6δλ. (30)

The renormalization constant δv is determined from the
gauge sector and has no O(m4

t ) contribution, i.e. δv =
0. The other renormalization constants δµ2 and δλ have
to be determined from the renormalization in the Higgs
sector. The corresponding two on-shell conditions are

(1) Tadpole condition: ∆Γ̂
(1)
H = 0,

(2) Higgs mass renormalization: ∆Γ̂
(2)
H = 0.

Solving these equations yields

δλ =
1

2v2

(
∆Γ

(2)
H − 1

v
∆Γ

(1)
H

)

=
3g4

64π2M4
W

m4
t

(
∆ε − log

m2
t

µ0

)
, (31)

with the expressions in (28) and with v = 2MW /g. Finally,
according to (30), one finds for the renormalized three-
and four-point vertices

∆Γ̂
(3)
H = − 3g3

8π2M3
W

m4
t , ∆Γ̂

(4)
H = − 3g4

4π2M4
W

m4
t , (32)

which correspond precisely to the two non-logarithmic
terms in (26).

To summarize this section, we conclude that all the
O(m4

t ) one-loop MSSM contributions to the h0 Green
functions in the asymptotic limit either represent a shift in
the h0 mass and in the h0 triple and quartic self-couplings,
which can be absorbed in Mh0 , or reproduce the SM top-
loop corrections. The triple and quartic h0 couplings
thereby acquire the structure of the SM Higgs-boson self-
couplings. Heavy top squarks thus decouple from the low-
energy theory when the self-couplings are expressed in
terms of the Higgs-boson mass.

4 Trilinear and quartic h0 self-couplings

In the previous section, the results for the one-loop con-
tributions to the three- and four-point functions were dis-
cussed considering in the Higgs sector the decoupling limit
and in the squark MSSM sector the limit of heavy t̃ masses
compared to the electroweak scale, such that t̃1 and t̃2
have masses very close to each other (cf. (7)). In this sec-
tion we study the more general case assuming only that
the stop masses are very heavy compared to the elec-
troweak scale (see (6)), but without further assumptions
on the relative size of the top-squark masses. Moreover,
also the requirement of the decoupling limit in the Higgs
sector is released. A numerical discussion for the trili-
near coupling shows how fast and to which accuracy the
asymptotic results are achieved, for the cases specified in
(7) and (8). The numerical analysis of the trilinear self-
coupling is appropriately extended also to the quartic h0

self-coupling.
Following the decomposition (17), we write the trili-

near self-coupling of the h0 boson as a sum of the tree-level
coupling and the one-loop radiative correction,

λhhh = λ0
hhh + ∆λhhh = λ0

hhh

(
1 +

∆λhhh

λ0
hhh

)
, (33)

where h ≡ h0 and λ0
hhh is defined in (15); ∆λhhh is the

renormalized one-loop three-point vertex,

∆λhhh = ∆Γ
t,t̃(3)
h0 + δΓ

t,t̃(3)
h0 , (34)

and, accordingly, in similar notation for the quartic cou-
pling.

Concerning the analytic expression for the one-loop
O(m4

t ) correction ∆λhhh, from the t, t̃-sector, we find the
result already given in [14] (for MQ̃ = MŨ also in [15]),
which can be written in a compact form,

∆λhhh =
3g3

32π2

1
MW

3m
4
t

cos3 α
sin3 β
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×
{

3 log
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m4
t

+ 3(m2
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)CtFt log
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(
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t
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[
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t̃2
)CtFt

]3
− 2

)
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(
M2
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− M2
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)2 [
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)F 2

t log
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m2
t̃2

+ (m2
t̃1
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t̃2

)2CtF
3
t gt

]}
, (35)

with

Ct = Xt/(m2
t̃1

− m2
t̃2

), with Xt defined in (2),

Ft = (At + µ tanα)/(m2
t̃1

− m2
t̃2

),

gt = 2 −
m2

t̃1
+ m2

t̃2

m2
t̃1

− m2
t̃2

log
m2

t̃1

m2
t̃2

. (36)

Notice that the non-logarithmic finite contributions to
the three-point function from the top-triangle diagram in
Fig. 1 is also included in (35) (the term with −2 in the
third line of (35)). It is, however, not taken into account
in the figures since it converges always to the SM term.

By considering the decoupling limit, which implies
cosα → sinβ, tanα → − cotβ, and by doing the appro-
priate expansion in (35) for the assumptions given in (6),
(7), one recovers the asymptotic expression for the three-
point function given in (18). In order to illustrate also
quantitatively how the results given in (18) and (35) are
approached in the asymptotic limit of ∆λhhh, we plot in
Fig. 2 the ratio ∆λhhh/λ

0
hhh as function of MA0 and tanβ,

choosing values of the parameters which obey strictly the
asymptotic conditions (7) for the squark sector:

MQ̃ ∼ MŨ ∼ 15 TeV, µ ∼ |At| ∼ 1.5 TeV. (37)

For definiteness, we also list the following values used for
the SM parameters along all figures in this paper: GF =
1.16639 × 10−5, mt = 175 GeV, mb = 4.62 GeV, MZ =
91.188 GeV, MW = 80.41 GeV [38].

In Fig. 2a the variation of the trilinear coupling with
MA0 is shown for different values of tanβ. Clearly, the
asymptotic and exact results are in agreement for large
MA0 values, above 500 GeV, depending in detail on tanβ.
An explicit numerical evaluation of ∆λhhh/λ

0
hhh as a func-

tion of tanβ is presented in Fig. 2b. The A-boson mass
MA0 = 1 TeV corresponds already to the decoupling limit
of the Higgs sector, and the various results for the triple
coupling coincide. In order to illustrate how well the radia-
tive corrections to ∆λhhh can be described in terms of the
corresponding shift in Mh0 , asymptotically given in (26),
we also display the variation of ∆Mh0

2/M2 tree
h0 in this

figure. ∆Mh0
2/M2 tree

h0 is represented by black diamonds;
it has been obtained according to the O(m4

t ) one-loop
Higgs-boson mass results presented in [9]. The agreement
with the vertex corrections is clearly visible. Therefore,
the radiative corrections to λhhh, although large, disap-
pear when λhhh is expressed in terms of Mh0 .

So far we have concentrated on the trilinear h0 self-
coupling, and we did not give explicit results for the quar-
tic Higgs boson self-coupling. The analytic expressions are
quite lengthy and hence we do not list them here. Nume-
rically, the higher-order contribution to the quartic cou-
pling, ∆λhhhh, normalized to the tree-level value λ0

hhhh
in (16), show the same behavior as the triple coupling in
Fig. 2 (since the differences are marginal, we do not in-
clude an extra figure). This is also a numerical proof that
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Fig. 3a,b. Leading Yukawa radiative corrections O(m4
t ) to the trilinear h0 self-coupling and to the h0 mass as a function of

a MA0 , and b tanβ, for choices of the SUSY parameters as in (38)

the O(m4
t ) corrections to the quartic h0 self-coupling are

absorbed in the h0 mass in the asymptotic limit.
For the rest of the analysis, we will consider the limit-

ing situation in the squark sector that was specified in (8).
In Fig. 3 we present numerical results for the variation of
the trilinear coupling, given by the expression (35), and
for the O(m4

t ) h0 mass correction, as given in [9], with
MA0 and tanβ. The radiative correction to the angle α
[9] is also taken into account. The SUSY parameters have
been taken to be

MQ̃ ∼ 1 TeV, MŨ ∼ µ ∼ |At| ∼ 500 GeV. (38)

With this choice of the SUSY parameters, the top-squark
masses, mt̃1

and mt̃2
, are heavy as compared to the elec-

troweak scale, but their difference is of O(MŨ ).
Figure 3a contains the variation of the trilinear cou-

pling with MA0 , for different values of tanβ. We also give
in Fig. 3 the O(m4

t ) corrections to ∆Mh0
2/M2 tree

h0 in order
to point out how far the large radiative corrections to the
h0 self-coupling can be absorbed in the h0 mass correc-
tion, ∆Mh0

2. The relation ∆λhhh/λ
0
hhh ≈ ∆Mh0

2/M2 tree
h0

is only fulfilled up to a small difference which remains also
for large MA. But even in the most unfavorable cases,
namely low tanβ and MA0 values, the difference between
the h0 mass and self-coupling at one loop does not ex-
ceed 6% (for tanβ = 5 and MA0 = 200 GeV, it is about
∼ 5%). The difference decreases for larger values of tanβ;
e.g. for tanβ = 10 and MA0 = 200 GeV, the mass and
self-coupling corrections are equal within ∼ 2%. This is
more explicitly displayed in Fig. 3b, containing the vari-
ation of ∆λhhh/λ

0
hhh and ∆Mh0

2/M2 tree
h0 with tanβ for

MA0 = 200 GeV and MA0 = 1 TeV.
Therefore, from the numerical analysis one can con-

clude that also for the case of a heavy stop system with
large mass splitting, of the same order as the typical SUSY

scale, the O(m4
t ) corrections to the trilinear h0 self-coup-

lings are absorbed to a large extent in the loop-induced
shift of the h0 mass, leaving a small difference of only a
few per cent, which can be interpreted as the genuine one-
loop corrections when λhhh is expressed in terms of Mh0 .
Similar results have been obtained also for the quartic h0

self-coupling, which again are close to the ones displayed
in Fig. 3 and hence are not given in an extra figure.

5 Conclusions

The O(m4
t ) corrections from the t, t̃-sector to the self-

couplings of the light CP -even Higgs-boson in the MSSM
have been evaluated. We showed analytically that, in the
limit of large MA0 and heavy top squarks, with mt̃1

and
mt̃2

close to each other, all the apparent non-decoupling
one-loop effects, which constitute large corrections to the
h0 self-couplings, are absorbed in the Higgs-boson mass
Mh0 , and the h0 self-couplings get the same form as the
couplings of the SM Higgs boson. Therefore, such a heavy
top-squark system decouples from the low-energy theory,
at the electroweak scale, and leaves behind the SM Higgs
sector also in the Higgs self-interactions.

Other limiting situations where the t̃-mass difference is
of the order of the SUSY mass scale have also been inves-
tigated. Similarly to the previous limit, the radiative cor-
rections to the h0 self-couplings are large, but their main
part can again be absorbed in the mass Mh0 . The genuine
loop corrections to the triple and quartic couplings, after
re-expressing them in terms of Mh0 , is of the order of a
few per cent. They are largest for low tanβ and MA0 , with
typically 5%. For large MA0 , i.e. in the decoupling limit
of the MSSM Higgs sector, they decrease to the level of
1%. The h0 self-interactions are thus very close to those
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of the SM Higgs boson and would need high-precision ex-
periments for their experimental verification.
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